Functional roles of Kv1 channels in neocortical pyramidal neurons.
نویسندگان
چکیده
Pyramidal neurons from layers II/III of somatosensory and motor cortex express multiple Kv1 alpha-subunits and a current sensitive to block by alpha-dendrotoxin (alpha-DTX). We examined functional roles of native Kv1 channels in these cells using current-clamp recordings in brain slices and current- and voltage-clamp recordings in dissociated cells. alpha-DTX caused a significant negative shift in voltage threshold for action potentials (APs) and reduced rheobase. Correspondingly, a ramp-voltage protocol revealed that the alpha-DTX-sensitive current activated at subthreshold voltages. AP width at threshold increased with successive APs during repetitive firing. The steady-state threshold width for a given firing rate was similar in control and alpha-DTX, despite an initially broader AP in alpha-DTX. AP voltage threshold increased similarly during a train of spikes under control conditions and in the presence of alpha-DTX. alpha-DTX had no effect on input resistance or resting membrane potential and modest effects on the amplitude or width of a single AP. Accordingly, experiments using AP waveforms (APWs) as voltage protocols revealed that alpha-DTX-sensitive current peaked late during the AP repolarization phase. Application of alpha-DTX increased the rate of firing to intracellular current injection and increased gain (multiplicative effects), but did not alter spike-frequency adaptation. Consistent with these findings, voltage-clamp experiments revealed that the proportion of outward current sensitive to alpha-DTX was highest during the interval between two APWs, reflecting slow deactivation kinetics at -50 mV. Finally, alpha-DTX did not alter the selectivity of pyramidal neurons for DC versus time-varying stimuli.
منابع مشابه
Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex.
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, w...
متن کاملContributions of Kv7-mediated potassium current to sub- and suprathreshold responses of rat layer II/III neocortical pyramidal neurons.
After block of Kv1- and Kv2-mediated K(+) currents in acutely dissociated neocortical pyramidal neurons from layers II/III of rat somatosensory and motor cortex, the remaining current is slowly activating and persistent. We used whole cell voltage clamp to show that the Kv7 blockers linopirdine and XE-991 blocked a current with similar kinetics to the current remaining after combined block of K...
متن کاملPostnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons.
Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K(+) channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current co...
متن کاملDistribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Alt...
متن کاملDopaminergic modulation of axonal potassium channels and action potential waveform in pyramidal neurons of prefrontal cortex.
Voltage-gated K(+) (KV) channels play critical roles in shaping neuronal signals. KV channels distributed in the perisomatic regions and thick dendrites of cortical pyramidal neurons have been extensively studied. However, the properties and regulation of KV channels distributed in the thin axons remain unknown. In this study, by performing somatic and axonal patch-clamp recordings from layer 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 97 3 شماره
صفحات -
تاریخ انتشار 2007